QSPR models of boiling point, octanol–water partition coefficient and retention time index of polycyclic aromatic hydrocarbons
نویسندگان
چکیده
A Quantitative Structure–Property Relationship (QSPR) analysis and study of polycyclic aromatic hydrocarbons (PAHs) is presented. Three physicochemical properties related to their environmental impact are studied: boiling point (bp), octanol– water partition coefficient ðlog KowÞ and retention time index (RI) for reversed-phase liquid chromatography analysis. The geometry of all PAHs were optimized by the semi-empirical method AM1 and used to calculate thermodynamic, electronic, steric and topological descriptors: HOMO and LUMO energies and the GAP between them, molecular hardness, polarizability, atomic charges, connectivity index, volume and surface area among others. After variable selection, principal component regression (PCR) and partial least squares (PLS) with leave-one-out crossvalidation were used for building the regression models. The regression coefficients obtained for the models were 0.995 (PCR and PLS) for bp, 0.975 (PCR) and 0.976 (PLS) for log Kow; and 0.898 (PCR and PLS) for RI. Finally, the models were used to predict these properties for those compounds for which experimental measurements are still unknown. q 2003 Elsevier B.V. All rights reserved.
منابع مشابه
QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR
Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...
متن کاملInvestigation on the binding of polycyclic aromatic hydrocarbons with soil organic matter: a theoretical approach.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants of the terrestrial environment that have been designated as Environmental Protection Agency (EPA) Priority Pollutants. In this study, molecular modeling was used to examine the physical and chemical characteristics of soil organic matter (SOM), fulvic acid (FA) and humic acid (HA), as well as their binding interactions with PAH...
متن کاملA Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure
A quantitative structure-property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol-water partition coefficient (lg P(OW)), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure-property relationship ...
متن کاملPrediction of boiling point and water solubility of crude oil hydrocarbons using sub-structural molecular fragments method
The quantitative structure–property relationship (QSPR) method is used to develop the correlation between structures of crude oil hydrocarbons (80 compounds) and their boiling point and water solubility. Sub-structural molecular fragments (SMF) calculated from structure alone were used to represent molecular structures. A subset of the calculated fragments selected using stepwise regression (fo...
متن کاملPredicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae.
In the present study, the acute toxicity of 10 polycyclic aromatic hydrocarbons (PAHs) associated with the Prestige fuel oil spill (Spain, 2002) were evaluated, either as single substances or in mixtures, in adults of the copepod Oithona davisae. All but dimethylphenanthrene had negative effects on O. davisae survival at concentrations below their water solubility, with 48-h median lethal conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003